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Abstract

Pain and stress share significant conceptual and physiological overlaps. Both phenomena 

challenge the body’s homeostasis and necessitate decision-making to help animals adapt to their 

environment. In addition, chronic stress and chronic pain share a common behavioral model of 

failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain 

endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be 

different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis 

remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and 

could lead to compromised well-being. In this brief review, we highlight the commonalities and 

differences between chronic stress and chronic pain, while focusing particularly on the central role 

of the limbic brain. We assess the current attempts in the field to conceptualize and understand 

chronic pain, within the context of knowledge gained from the stress literature. The limbic brain—

including hippocampus, amygdala, and ventromedial pre-frontal cortex—plays a critical role in 

learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and 

generate learning signals necessary for decision-making. Therefore, the physiological and 

structural remodeling of this learning circuitry is observed in conditions such as chronic pain, 

depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these 

conditions.
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Why Stress and Pain?

Stress-related psychiatric disorders, including depression and posttraumatic stress disorder 

(PTSD), are highly prevalent disabling illnesses with limited treatment options and poorly 

understood pathophysiology.1 Chronic pain is a widespread pathology afflicting 20%–30% 

of adults. Moreover, while treatment options are available, chronic pain continues to 

seriously affect the life quality of patients, and almost half of pain suffering individuals do 

not achieve adequate pain management.2 Better understanding of the overlapping and 

distinguishing features of chronic stress and pain could provide greater insight into the 

neurobiology of these processes, as well as contribute to rational drug development for these 

often comorbid conditions.3 In the current brief review, we describe the commonalities and 

differences of stress and pain, while primarily focusing on the maladaptive processes of 

chronic pain and chronic stress.

Pain and stress are two distinguished yet overlapping processes presenting multiple 

conceptual and physiological overlaps. Stress can be defined broadly as a process by which a 

challenging emotional or physiological event or series of events result in adaptive or 

maladaptive changes required to regain homeostasis and/or stability.4 Pain is the collection 

of emotional and sensory perceptions, as well as motor behaviors, resulting from the 

activation of the nociceptive pathways in response to harmful stimuli. The ability of the 

organism to adapt to stress or pain by regulating the internal milieu and maintaining stability 

is termed allostasis. Pain and stress are both adaptive in protecting the organism, for 

example, from physical injury or starvation. However, if either of the two processes becomes 

chronic, it can lead to long-term “maladaptive” changes in physiology and consequently 

behavior, resulting in suffering and compromised well-being.5 Taken together, these 

conceptualizations are clearly overlapping and offer an opportunity for theoretical and 

experimental exchanges between the two fields of study.

Researchers have adopted two, mutually nonexclusive, models linking pain and stress. The 

first model considers pain as one type of stress that adds strain on the organism. For 

example, chronic back pain (CBP) is conceptualized as a stress overload6 resulting in an 

increased risk for depression, alcohol abuse, or weight gain.5,7,8 In this model, chronic pain 

leads to “wear-and-tear”—also termed allostatic overload—in the body and brain “from 

chronic dysregulation (i.e., over-activity or inactivity) of physiological systems that are 

normally involved in adaptation to environmental challenge.”9 These wear-and-tear 

alterations result in compromised well-being, and/or social and occupational dysfunction. 

Persistent experience of pain (i.e., over-activity) can burden the brain and lead to deficits in 

decision-making.10–12 Conversely, fear of movement that would exacerbate pain could lead 

to a more sedentary lifestyle (i.e., inactivity) and weight gain. The second model depicts the 

cases in which wear-and-tear precipitates chronic pain. In this model, patients are faced with 

unpredictable stress that triggers pain—a migraine attack, for example—and leads to a 

vicious circle of “feed-forward” maladaptive physiological responses such as inflammation 

and brain damage and hence increased vulnerability to persistence of pain.13 The two 

models do not necessarily contradict each other, but rather borrow from the stress literature 

to provide either a causal conceptualization of the onset and persistence of chronic pain or of 

its long-term consequences. They also emphasize that stress and pain can be two nodes in a 
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vicious circle of maladaptive responses to environmental challenges leading to compromised 

well-being.

In this review, we examine the important overlap between chronic pain and stress, while 

emphasizing differences between the two phenomena, which could have separate and even 

opposite neurobiological effects. We describe the commonalities and differences between 

chronic stress and chronic pain, with a special emphasis on the neurobiological 

underpinnings, where the brain limbic system14 stands as a central mediator of these two 

phenomena. We discuss in particular whether chronic pain can be considered under the 

larger process of stress or whether the two phenomena have different biological processes.

Socioeconomic Factors in Stress and Chronic Pain

There is evidence that disparity in many dimensions of socio-economic status (SES) such as 

income, education, and occupation, account for a significant variance of medical morbidities 

and mortalities.15,16 Studies have found a so-called “gradient” between occupational 

hierarchy and health disparities in adults. People in the bottom of the gradient have worse 

morbidities and mor-talities.15 These SES disparities can in turn translate at the individual 

level to environmental stressors leading to a vulnerability to depression, substance use 

disorders, and obesity among others.4,17 Furthermore, children growing up in poor 

communities are at an increased risk of exposure to crime, economic hardship, and 

pollution18; this in turn can lead to adverse behavioral (e.g., emotional dysregulation)17,19 

and neurodevelopmental outcomes (e.g., psychopathology and brain changes).20,21 While 

the brain is believed to be at the center of this process, the direct path linking SES factors to 

neurobiological brain adaptive and maladaptive responses remains largely unknown,9 with 

pain and stress as putative contributing factors.

The link between SES factors and exposure to stress is evident, given the broad definition of 

stress. However, the relationship between SES and chronic pain is less discernable. In the 

British Birth Cohort Study, a 45-year longitudinal study, increased risk for reporting pain as 

adults was found in individuals from a lower SES, and in those who experienced adverse life 

events as children. However, the increased risk was partly explained by other current life 

factors.22,23 In patients followed through the emergency room after a major physical trauma, 

a higher educational level was the only social factor associated with persistent back pain. 

Income and employment status before the injury were not associated with persistent back 

pain after the trauma.24 Educational level was also a protective factor against frequent knee 

pain in a cohort of Swedish patients examined for knee osteoarthritis.25 These findings 

support the presence of a link between social stressors, lower educational level, and onset of 

pain diatheses. Nevertheless, a recent literature review found no relationship between SES 

characteristics and the frequency of seeking a medical consultation for back pain.26 In 

addition, two longitudinal studies found no significant correlations between chronic pain, 

socio-demographic factors, adverse life events, and “dysfunction of the stress system.”27,28 

These studies underscore the complexity of the relationship between social factors and 

chronic pain, while challenging the common wisdom of a direct link between social 

stressors such as low SES and the onset of chronic pain.
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The Neurobiology of Stress and Pain

The brain plays a central role in stress and pain processes.4,29,30 As individuals interact with 

their environment, physical and psychological stressors can lead to adaptive or maladaptive 

neural and hormonal responses. Acute stress triggers the activation of the hypothalamic-

pituitary-adrenal axis (HPA) leading to the release of adrenal glucocorticoids.29 These 

hormones have receptors concentrated in the limbic brain including the hypothalamus, 

amygdala, hippocampus, and prefrontal cortex (PFC).31,32 In the limbic system, 

glucocorticoids act as transcription factors and have therefore long-lasting effects on cellular 

function. Acute stress also activates the autonomic nervous system regulated by the brain-

stem,33 leading to increased blood pressure and diversion of blood from the gastrointestinal 

tract to the brain and muscles.29 In addition, perceived stress is integrated in the limbic brain 

with past experiences (i.e., memory), current physiological state (e.g., hunger/satiety), and 

decision-making. Subsequently, emotional states are updated accordingly (e.g., increased or 

decreased anxiety) with an ultimate effect on behavior (e.g., fight or flight). The limbic brain 

and HPA axis form an interconnected loop as projections from the hippocampus, amygdala, 

and PFC feed-back to the hypothalamus and regulate the stress responses and glucocorticoid 

release (Figure 1).34 Other brain areas have been also shown to be active during acute stress 

such as the insula and striatum.35

Pain requires conscious perception of the nociceptive process. Nociceptive information is 

transmitted via peripheral A-d and C-fibers to the brainstem and thalamus, where it is then 

relayed to multiple cortical and subcortical areas including primary and secondary 

somatosensory areas, anterior cingulate cortex, insula, amygdala, striatum, and medial 

PFC.36–39 Acute pain engenders both a sensory and an emotional experience and is an 

adaptive response protecting the body from tissue damage like a burning fire or the attack of 

a predator. Although acute pain can be easily conceptualized as a form of acute stress, the 

details of the neural and endocrine response to acute pain and acute stress can be different. 

For example, while it is known that both acute pain and stress activate the autonomic 

nervous system,29,40 evidence that acute pain activates the HPA axis and leads to peripheral 

adrenal cortisol secretion, one of the hallmark endocrine responses to stress, is unclear.41,42 

Alternatively, at the brain level, functional magnetic resonance imaging studies of response 

to stress or pain demonstrate noticeable spatial overlap in the amygdala, hippocampus, 

striatum, insula, and anterior cingulate cortex.35,43

Learning and Neural Remodeling in Chronic Stress and Chronic Pain

Stress and pain engage the learning circuitry of the hippo-campus, amygdala, and PFC 

(Figure 1), as animals interact adaptively with the challenges of their environment to 

maintain homeostasis.9,43 Animals have to learn about their environment to seek places 

where food can be found while avoiding the threat of an attack from a predator or the 

ingestion of poisonous substances. Fear (Pavlovian) conditioning and extinction are 

paradigms of learning in which both chronic pain and chronic stress can be 

conceptualized.44,45 In a Pavlovian model, a previously neutral stimulus acquires the ability 

to induce fear behavior in animals (e.g., conditioned stimulus) after being paired with an 

unconditioned painful stimulus, like a foot-shock.46 Extinction of the fear association, or the 
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unlearning of the fear, occurs when the conditioned stimulus is presented multiple times 

without the unconditioned stimulus.47 PTSD and chronic pain can be considered conditions 

where the brain fails to extinguish the negative memory (i.e., memory of trauma or 

pain).44,45 Consistently, both PTSD and chronic pain patients show deficiency in extinction 

learning.48,49 In addition, similar to findings in traumatic stress preclinical literature,50 an 

animal model of chronic neuropathic pain shows impaired context-related fear extinction.51 

The hippocampus, amygdala, and PFC each play a critical role in fear learning and 

extinction.45,52,53 The neurochemical properties of the learning circuitry and its adaptive 

response to chronic stress or pain are believed to be crucial in determining remission or 

persistence of pain and stress response beyond what is required for an evolutionary 

advantageous adaptive response.45,54–56 Below, we expand on details of the role played by 

each of these regions in chronic stress and chronic pain demonstrating the compelling 

conceptual overlap between the fields yet highlighting important empirical differences.

The hippocampus is active during acute stress,35 but rarely seen active during acute pain in 

humans.57 An intact hippocampus is important during acquisition of fear conditioning and 

association of context with stimuli that necessitates decision-making such as finding food or 

avoiding pain.58–62 In addition, the hippocampus contributes to contextual fear 

extinction.63,64 It contains glucocorticoid receptors,65 projects to the hypothalamus,66 and is 

thought to down-regulate the response to stress.9,67–69 Neurogenesis persists in the adult 

mammalian hippocampus70 and contributes to learning and memory.71 In humans, chronic 

pain and stress-related psychiatric disorders have been associated with shrinkage of the 

hippocampal volume.51,56,72,73 Vachon-Presseau et al. demonstrated that hippocampal 

volume is inversely correlated to elevated basal cortisol levels in CBP patients but not in 

matched healthy control arguing for a “stress model of chronic pain” centered on the 

hippocampus. Interestingly, smaller hippocampal volume predicts the risk of persistence of 

back pain after three years of a new episode of sub-acute back pain (SBP; pain duration 6–

16 weeks),56 and is present in individuals at risk for PTSD and depression.74,75

Both chronic pain and stress were associated with suppressed hippocampal 

neurogenesis,51,72 a process that could be mediated by elevated glucocorticoids during 

stress.72 However, the relationship between neurogenesis and acute pain or stress is more 

complex. A recent study in rodents found that adult hippocampal neurogenesis is necessary 
for the emergence of pain behavior after nerve injury.76 Nevertheless, neurogenesis was 

suppressed once the pain became chronic,51 implying that the interaction between peripheral 

injury and central hippocampal learning mechanisms is critical for the onset of pain 

behavior. These results are in resemblance to findings by Kirby et al.77 showing that acute 

immobilization for 3 h, but not foot shock for 30 min, increased hippocampal neurogenesis. 

The effect of immobilization stress on neurogenesis could be reproduced with corticosterone 

injections, which leads to a delayed onset (at 2 weeks) of enhanced fear extinction.77 These 

studies highlight the fact that acute pain (i.e., foot shock) cannot be fully conceptualized as 

an acute stressor and that learning after nerve injury might have different long-term 

behavioral effects from stress. It also underscores the beneficial effects of acute stress, which 

increased neurogenesis and enhanced extinction. Consistently, Mutso et al.51 demonstrated 

impaired contextual fear extinction after peripheral nerve injury. In contrast, Kirby et al.77 

demonstrated enhanced fear extinction two weeks after an acute stressor presentation.
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The amygdala is another major node of the limbic brain (Figure 1) that is highly 

interconnected with the hippocampus.78 It plays a major role in emotional learning53 and in 

the response to stress and pain. The amygdala is active during response to threats such as 

angry faces79,80 and in response to acute pain.81,82 It is critical in the expression of fear46 

and shows hyperactivity in chronic stress-related conditions such as PTSD, and in chronic 

pain disorders such as CBP or migraine.83–85 Animal data show that the amygdala plays a 

dual role in the perception of nociceptive input depending on the context of the painful 

stimulation. Lesion of the central nucleus of the amygdala (CeA) abolishes or decreases 

aversive stimulus-induced hypoalgesia (i.e., pain reduction).86 Corticosterone implant in the 

CeA enhances anxiety-like behavior and visceral hypersensitivity to balloon distention of the 

colon or acetic acid infusion in the colon.87 In addition, CeA neurons show increased 

sensitization in a rodent model of arthritis, independent of peripheral nociceptive input.88 In 

animal models, chronic stress and chronic pain are both associated with dendritic growth in 

the amygdala89–91 suggesting enhanced synaptic activity, possibly in response to increased 

glucocorticoid levels.92 At the macroscopic level, humans suffering from depression, PTSD, 

or chronic pain were found to have smaller amygdala,56,93–96 although not without 

inconsistency (e.g., Kuo et al.97). Interestingly, depressed patients on medications have 

increased amygdala volume.93 In addition, a cohort of 10 patients with hip osteoarthritis 

showed an increase in amygdala volume after total hip replacement and remission of pain98 

suggesting that volume shrinkage is a consequence of chronic pain and depression, and 

could therefore recover if both conditions are adequately treated. This data, along with the 

decreased hippocampal volume in chronic pain, is consistent with the concept of allostatic-
load from chronic pain as volumetric shrinkage can be considered the wear-and-tear 
manifested in the brain secondary to the chronic exposure to nociception lending support to 

the view that chronic pain can be considered a form of chronic stress.6 Nevertheless, other 

data showed that amygdala volume stays unchanged and predicts the persistence of back 

pain three years after a sub-acute episode of back pain,56 suggesting that a smaller amygdala 

volume could be a risk factor for chronic pain and not the consequence of exposure to 

chronic pain.

Both the hippocampus and amygdala are highly interconnected with the ventro-medial PFC 

(vmPFC)99,100 (Figure 1), which is a critical area in fear extinction52,54,101,102 and in 

assigning value to rewarding and aversive stimuli.103,104 vmPFC volume shrinks in chronic 

pain, PTSD, and depression.105,106 Activity in the vmPFC, on the other hand, increases after 

repeated acute stress in healthy subjects,35 and is increased in patients suffering from 

chronic pain and depression84,85,107–109 but is decreased in patients suffering from 

PTSD.45,110 In addition, vmPFC activity is positively correlated with pain intensity in CBP 

patients,84,85,107 but negatively correlated with severity of symptoms in PTSD. Therefore, 

the physiology of chronic pain and chronic stress might be diverging in the vmPFC. 

Behaviorally, altered vmPFC activity could explain impaired extinction in PTSD and 

impaired emotional decision-making in chronic pain10,11,111,112 and depression.113

Contentious Points in Borrowing From Stress to Explain Chronic Pain

Despite the significant neuroanatomical and physiological overlap reported above between 

chronic pain and chronic stress, upholding the stress model of chronic pain faces some 
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challenges. First, as we outlined above, the data on the contribution of psycho-social factors 

and markers of biological stress to the onset or the persistence of chronic pain is 

conflicting.22,26–28 Second, the data on the “dysregulation of the HPA axis and cortisol” 

level in chronic pain does not fit any clear consistent pattern. As such, studies of chronic 

pain conditions have reported increases6,114–119 and decreases41,120–124 in cortisol level, 

while many studies reported no changes.125–128 Furthermore, different reports present 

conflicting data within the same condition such as CBP,6,41 fibromyalgia,125,129 or 

migraine.117,119,128 Third, the definition of stress is very broad; for example, showing 

violent pictures and acute aversive stimuli-like acute pain can be both stressful but involve 

different physiology. Furthermore, release of cortisol and activation of the hippocampus are 

often observed following stress,35 but rarely seen after acute pain.57 Similarly, although 

chronic conditions that are thought to arise after repeated stress or trauma such as PTSD and 

depression share markers of vulnerabilities with chronic pain within the limbic brain like a 

smaller hippocampus and a smaller amygdala,56,75,93–95 the brain endophenotypes appear to 

be different. For example, vmPFC global brain connectivity is decreased in depression,130 

yet increased in PTSD131,132 and chronic pain.133 This observation does not preclude a role 

of stress physiology in the onset and persistence of chronic pain, but rather calls for more 

specific definitions of the biological markers of stress.

Conclusion

Taken together, the data discussed above provide a rationale for the attempts to use the stress 

model in chronic pain, yet emphasize the difficulties in classifying the concept of chronic 

pain under the general framework of chronic stress. We believe that unifying both processes 

under one theoretical framework would be enhanced by understanding how different chronic 

painful or stressful conditions induce continuous emotional learning centered particularly 

around the properties and remodeling of amygdala and hippocampus.
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Figure 1. 
Schematic depiction of the circuitry involved in chronic pain and chronic stress. Light-blue 

arrows indicate anatomical or physiological links. Dark blue arrows indicate time. Black and 

red arrows indicate magnitude. Abbreviations: Amy, Amygdala; Hipp, Hippocampus; Hypo, 

Hypothalamus; PTSD, post-traumatic stress disorder; VMPFC, ventro-medial prefrontal 

cortex.
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